Publica unas prácticas
es
Detalles de la Oferta
Empleo > Prácticas > Informática/Tecnología > Francia > Detalles de la Oferta 

Dynamic Distribution Shifts: OoD Detection with Dynamic Thresholds H/F

CEA
Francia  Francia
Prácticas, Informática/Tecnología, Francés
62
Visitas
0
Candidatos
Regístrate

Descripción del puesto:

Description du poste

Domaine

Systèmes d'information

Contrat

Stage

Intitulé de l'offre

Dynamic Distribution Shifts: OoD Detection with Dynamic Thresholds H/F

Sujet de stage

Trustworthy Deep Learning - Confidence Monitoring

Durée du contrat (en mois)

3

Description de l'offre

The detection of out-of-distribution (OoD) samples is crucial for deploying deep learning (DL) models in real-world scenarios. OoD samples pose a challenge to DL models as they are not represented in the training data and can naturally arrive during deployment (i.e., a distribution shift), increasing the risk of obtaining wrong predictions. Consequently, OoD samples detection is crucial in safety-critical tasks, such as healthcare or automated vehicles, where trustworthy models are required.
The existing literature for the OoD detection problem focuses on the development of confidence scores where a threshold is applied to build a binary classifier to tell if a sample is in-distribution (InD) or OoD. In particular, the confidence score threshold is typically set using the values that correspond to InD samples, such that 95% of the confidence score values from InD samples fall above the selected thresholds, i.e., 95% True Positive Rate. However, setting a fixed threshold can lead to high False Positive Rate (FPR) values. In addition, even if the InD remains the same after deployment, the OoD could vary, resulting in FPR fluctuations. These two situations are of high interest in safety-critical applications, as misclassifying the confidence score value of an OoD sample as InD (False Positive) can result in more catastrophic consequences than misclassifying the confidence score value of an InD as OoD (False Negative).
To address the limitations and impact of a single fixed threshold selection, recent works propose using adaptive thresholds or a set of candidate thresholds to tackle the problem of dynamic distribution shifts. Specifically, in this internship position, we propose building on the work of Timans et al., who proposed a framework that leverages game theory and sequential hypothesis testing to assess the validity of a set of candidate thresholds. Therefore, the internship position aims to extend this work by exploring one or multiple of the following directions of improvement:
* Dynamic threshold selection (vs. fixed thresholds)
* Adaptive betting strategies (vs. static betting strategy)
* Adaptive windowing/batching (vs. fixed windows/batches size)
* Game theory methods: e.g., use of market-making algorithms (for threshold selection, and finding the optimal size of windows/batches)

Moyens / Méthodes / Logiciels

Statistics, Game Theory

Profil du candidat

* Master students (M1/M2 - France)
* Proficiency in Python, NumPy, SciPy, sciki-tlearn, PyTorch,…
* Solid background in math, probability & statistics

Localisation du poste

Site

Saclay

Localisation du poste

France, Ile-de-France, Essonne (91)

Ville

Palaiseau

Critères candidat

Langues

Anglais (Courant)

Diplôme préparé

Bac - Baccalauréat général

Formation recommandée

Math, Statistics

Possibilité de poursuite en thèse

Oui

Origen: Web de la compañía
Publicado: 14 Nov 2025  (comprobado el 14 Dic 2025)
Tipo de oferta: Prácticas
Sector: Gobierno / ONGs
Duración: 3 meses
Idiomas: Francés
Regístrate
124.206 empleos y prácticas
en 158 países
Regístrate
Empresas
Ofertas
Países